ANALYTICAL RESULTS OF SURFACE WATER SAMPLES COLLECTED FROM RACCOON CREEK March 14, 2000 Sampling Event

Prepared for:

LYONDELL CHEMICAL/BEAZER EAST INC.

Prepared by:

Applied Hydrology Associates
Pittsburgh, PA
Denver, Colorado

May 5, 2000

ANALYTICAL RESULTS OF SURFACE WATER SAMPLES COLLECTED FROM RACCOON CREEK March 14, 2000 Sampling Event

Prepared for

LYONDELL CHEMICAL/BEAZER EAST INC.

Prepared by:

Applied Hydrology Associates, Inc.
Pittsburgh, PA
Denver, Colorado

May 5, 2000

Mithell D. Procurence

TABLE OF CONTENTS

Section	<u>Pas</u>	<u>ze</u>
1.0	INTRODUCTION	.1
2.0	SAMPLING	.1
3.0	RESULTS	.2
Tables		
1 2	Summary of Analytical Results for Samples Collected from Raccoon Creek	.2 .3
<u>Figure</u>	<u>es</u>	
1 2	Transect Location Map Surface Water Benzene Concentrations at Transect E	.4 .5
Appen	<u>adices</u>	
A B	Groundwater Elevations, East and West Sides of Raccoon Creek Data Validation Report	

1.0 INTRODUCTION

This report presents the results of surface water samples collected from Raccoon Creek at the Lyondell Chemical / Beazer East Inc. Monaca, PA site during the March 14, 2000 quarterly monitoring event. The samples were collected in compliance with Appendix D of the 1997 Consent Order and Agreement (1997 CO&A) between ARCO Chemical Company¹, BEI and the Pennsylvania Department of Environmental Protection (PADEP) dated October 20, 1997.

2.0 SAMPLING

Surface water samples were collected at Transect E as defined in the 1997 CO&A. The location of Transect E is shown in Figure 1. In addition, water elevations were measured in nearby monitoring wells and the results are presented in Appendix A.

A total of eight surface water samples, including a duplicate, were collected from Raccoon Creek on March 14, 2000. These samples were collected at the same three locations along Transect E as in previous sampling events. The locations are shown in Figure 2 and are at the center of the stream, and approximately 30 feet from the east and west banks. At the center location, samples were collected at three depths; 6 inches below the surface, 2 inches above the bottom, and midway between the surface and bottom. Samples from the east and west sides of the transect were collected at two depths; 2 inches above the bottom, and midway between the surface and bottom.

During sampling a boat was stationed at Transect E using a rope secured to the east and west shores of Raccoon Creek. The samples were collected by using a peristaltic pump to pump water from the desired depth into three 40-ml vials preserved with hydrochloric acid. Samples were collected from the required depths utilizing tubing secured to a vertical steel rod lowered from the boat until it rested on the bottom of the creek. The rod did not penetrate the sediments on the creek bottom because a 1-foot diameter disc constructed of steel mesh is fastened perpendicular to the bottom of the rod.

Two tubes were used. The bottom of the "deep sample tube" was secured to the probe 2 inches from the bottom of the probe. The bottom of the "mid-depth sample tube" is adjustable and was secured to the probe mid-depth at each location. Care was taken not to disturb the sediments at the sampling location and the pumped water was closely monitored to ensure sediment was not included in the sample. One gallon of water was pumped through the tubing before each sample was obtained in order to purge the tubing.

¹ ARCO Chemical Company is now Lyondell Chemical Worldwide

05/05/00

The samples were uniquely numbered as follows to identify the location, depth and date of sampling:

RC-EC-00-0300

Where:

RC indicates Raccoon Creek

EC indicates Transect E and location (C=Center, L = Left bank, R = Right bank
[facing downstream])

00 indicates sample depth in feet and tenths of a foot (0.0 feet)

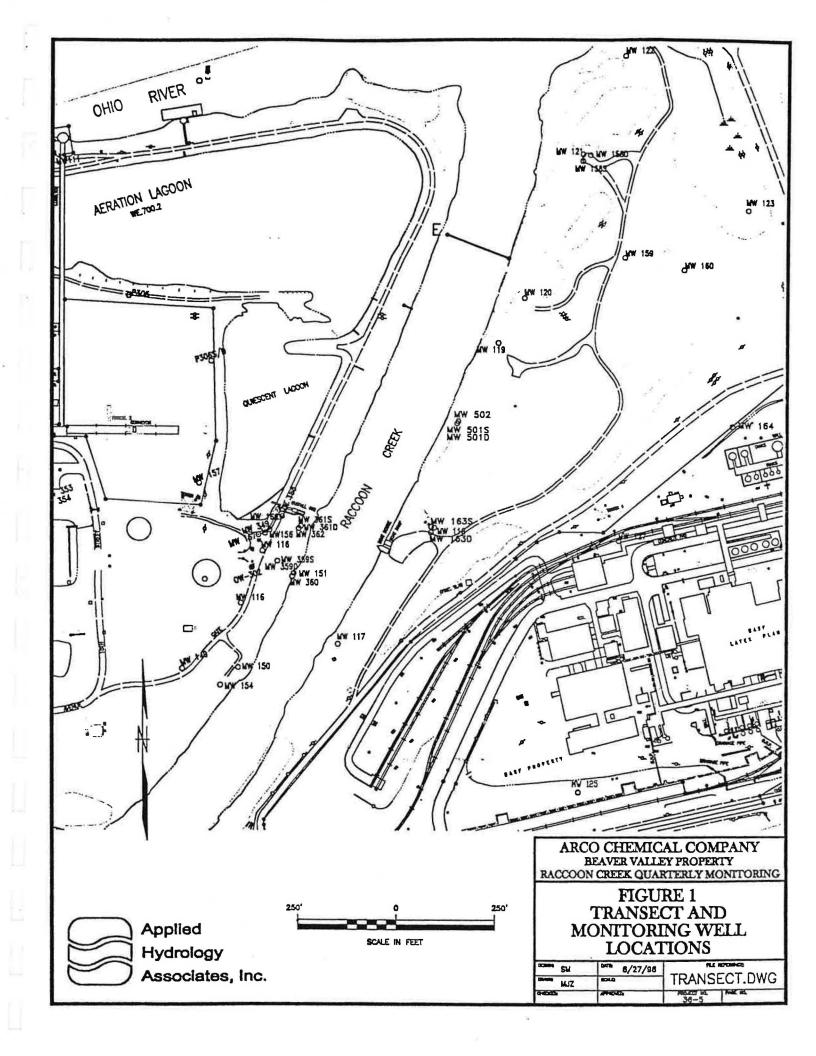
0300 indicates the month and year collected (March 2000)

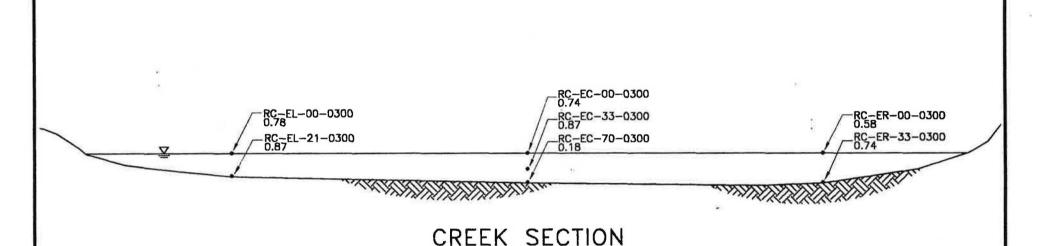
Samples were logged onto a chain of custody form (included in of the Analytical Report in Appendix B) and stored on ice until receipt by Precision Testing Labs in Toms River, NJ. Reliance analyzed the samples using USEPA Method 524.2 for BTEXS.

3.0 RESULTS

The analytical results are presented in Table 1. Benzene was detected in all of the seven locations at concentrations ranging from 0.18 μ g/L in Sample RC-EC-70-0300 to 1.01 μ g/L in sample RC-EC-00-0300. Sampling locations and depths are shown on Figure 2, along with the concentration of benzene at each location. Water levels in wells near Raccoon Creek are presented in Appendix A.

Table 1
Summary of Analytical Results for Samples Collected from Raccoon Creek


Sample Name	Benzene	Toluene	Ethylbenzene	Xylene	Styrene
RC-ER-33-0300	0.74	1.30	0.35	2.13	< 0.58
RC-ER-00-0300	0.58	1.05	0.34	2.08	< 0.58
RC-EL-21-0300	0.87	< 0.6	< 0.22	1.27	< 0.58
RC-EL-00-0300	0.78	< 0.6	< 0.22	0.61	< 0.58
RC-EC-70-0300	0.18	< 0.6	< 0.22	< 0.22	< 0.58
RC-EC-33-0300	0.87	1.87	0.40	2.75	< 0.58
RC-EC-00-0300	1.01	4.74	2.04	12.03	< 0.58
RC-EC-00-0300A	0.70	1.32	0.23	1.53	< 0.58


The analytical data were validated upon receipt and found to be acceptable. A Data Validation Report is provided in Appendix B. Table 2 presents the historical concentration of benzene in Raccoon Creek at Transect E during all monitoring events to date.

Historic Benzene Concentrations at Transect E (ug/L)

Sampling Location	Sampling Depth	7/23/97	10/28/97	2/25/98	5/21/98	7/29/98	10/27/98	2/3/99	4/27/99	7/22/99	10/20/99	3/14/00
30 Feet off West Bank	Mid-depth	0.28	<0.13	<0.13	0.70	<0.13	1.57(1)	0.37	< 0.66	<0.13	0.18(1)	0.87
30 Feet off West Bank	Deep	0.81	<0.13	<0.13	0.70	<0.13	0.61 ⁽¹⁾	0.49	< 0.66	<0.13	0.27	0.78
Center of Creek	Shallow	0.24	<0.13	0.38	0.70	<0.13	<0.13	0.61 ⁽¹⁾	< 0.66 ⁽¹⁾	<0.13(1)	0.43	0.86 ⁽¹⁾
Center of Creek	Mid- Depth	0.18	<0.13	0.49	0.64	<0.13	0.2	0.64	< 0.66	<0.13	0.42	0.87
Center of Creek	Deep	0.46	<0.13	0.30	0.60	<0.13	<0.13	0.69	< 0.66	<0.13	0.20	0.18
30 Feet off East Bank	Mid-depth	0.16	<0.13	<0.13	<0.13	0.13	0.52	< 0.13	< 0.66	<0.13	0.23	0.58
30 Feet off East Bank	Deep	<0.13	<0.13	0.14	0.22	0.22	<0.13	< 0.13	< 0.66	<0.13	<0.13	0.74

⁽¹⁾ Results shown are the average of the blind duplicate samples.

LOOKING DOWNSTREAM

LEGEND

SURFACE WATER SAMPLE LOCATION
 ALL CONCENTRATIONS IN ug/L

Applied Hydrology Associates, Inc.

LYONDELL CHEMICAL BEAVER VALLEY PROPERTY RACCOON CREEK QUARTERLY MONITORING

FIGURE 2

SURFACE WATER
BENZENE CONCENTRATIONS
AT TRANSECT "E"

MARCH 14, 2000

SM SM	B/17/98		REPURDIO		
JLS	JLS NOT TO SCALE		BENZENE.dwg		
Criticalica	APPENDE	36-5	PARE NO.		

Appendix A

Groundwater Elevations, East and West Sides of Raccoon Creek

GROUNDWATER LEVELS ON THE EAST AND WEST SIDES OF RACCOON CREEK March 14, 2000

Well Number	Top of Casing (TOC) (ft. amsl)	Depth to SPL from TOC (2) (ft. amsl)	Depth to Water from TOC (2) (ft. amsl)	Calculated Water Level Elevation (1) (ft. amsl)	Calculated SPL Thickness (3) (ft. amsl)	Comments
		N	Ionitoring V	Vells Screened	in Silty Clay	Unit
				OTH AREA		
MW - 360	685.84	ND	3.60	682.24	N/A	
MW - 170	706.70	ND	22.49	684.21	N/A	
MW - 362	689.43	ND	5.80	683.63	N/A	
			F	RACCOON CREEK	AREA	
MW- 118	690.39	ND	6.72	683.67	N/A	
MW - 502	701.86	ND	18.60	683.26	N/A	
MW - 119	705.59	ND	22.33	683.26	N/A	
MW - 120	709.42	ND	26.19	683.23	N/A	
MW - 121	713.90	ND	30.55	683.35	N/A	
MW - 152	696.35	ND	13.16	683.19	N/A	
	×	Monitor	ing Wells So	reened in Upp	er Sand and	Gravel Unit
			- 0	OTH AREA		
MW - 344	709.42	ND	25.67	683.75	N/A	
MW - 359S	692.93	ND	9.49	683.44	N/A	
MW - 361S	689.40	ND	6.02	683.38	N/A	
						Well had excessive pressure build up from OTH
MW - 169	707.93	ND	0.00	ж	N/A	Sprage event (3/8/00 - 3/9/00). No reading taken
MOV 4/5	711.06	.	27.62	(02.42	24/4	Top of casing changed from 707.36 to 711.06 on 11/98 accommodate respiration monitoring well head.
MW - 167	711.06	ND	27.63	683.43	N/A	Monitoring well stick up is 3.70 above orig. TOC
MANY 1/20	(00.07) ID		RACCOON CREEK		
MW - 163S	690.87	ND	7.46	683.41	N/A	
MW - 501S	701.30	ND	18.30	683.00	N/A	
MW - 162S	706.05	ND	22.78	683.27	N/A	
MW - 159	708.99	ND	25.64	683.35	N/A	
MW - 160	701.00	ND	17.74	683.26	N/A	
MW - 158S	713.60	ND	30.26	683.34	N/A	
MW - 122	692.78	ND	9.44	683.34	N/A	
Note: See figur		El di em	20 · D ·	W. C. TOC		
3	The state of the s			to Water from TOC. e. ND means no SPL		

5/5/009:21 AM

GROUNDWATER LEVELS ON THE EAST AND WEST SIDES OF RACCOUN CREEK March 14, 2000

Well Number	Top of Casing (TOC) (ft. amsl)	Depth to SPL from TOC (2) (ft. amsl)	Depth to Water from TOC (2) (ft. amsl)	Calculated Water Level Elevation (1) (ft. amsl)	Calculated SPL Thickness (3) (ft. amsl)	Comments
	(IL anisi)	(IL amsi)	(it. amsi)	(it. amsi)	(it. amsi)	
		Monitori	ng Wells Sc	reened in Low	er Sand and	Gravel Unit
				OTH AREA		
MW 345	708.91	ND	25.60	683.31	N/A	
MW 361D	689.35	ND	6.08	683.27	N/A	
MW 359D	692.80	ND	9.49	683,31	N/A	
				RACCOON CREEK		I C I
MW 163D	689.62	ND	6.33	683.29	N/A	
MW 501D	701.44	ND	18.20	683.24	N/A	
MW 166D	703.95	ND	20.75	683.20	N/A	
MW 158D	712.04	ND	28.84	683.20	N/A	
		W	ater Levels i	in Raccoon Cre	ek and Ohio	River
			RACCOO	N CREEK AREA S	TAFF GAUGE	
Time of	Staff Gauge Elevation (ft. amsl)	Staff Gauge	Calculated Water Level Elevation			Comments
Observation	(4) (5)	Reading	(ft. amsl)			
8:55	685.00	1.38	683.38			
9:46	685.00	1.50	683,50			
8:40	685,96	3.40	683.36			4
10:04	685.96	3.55	683.51			
						342
						AT
Note: See figur	a 1					
		Elevation of T	OC minus Death	to Water from TOC.		*
				e. ND means no SPL	was detected	
						not applicable, no SPL was detected.
			on staff gauge at		TOC. IVA IIICAIIS	not applicable, no SEL was detected.
T) LICVALIUM O	os.ou is equival	LIL TO J.VO IIIAIK	on stan gauge at	TACCOUNT CICCK		

Appendix B Data Validation Report

1200 South Parker Road, Suite 100

Denver, CO 80231

Tel: (303) 873-0164

Fax: (303) 873-6110

MEMORANDUM

TO:

Files

FROM:

Skip Meier, Applied Hydrology Associates

DATE:

May 5, 2000

SUBJECT:

Data Validation Results, Lyondell Chemical Worldwide Beaver Valley Property

Data validation was performed on the volatile organic analytical data from eight surface water samples obtained from Raccoon Creek on March 14, 2000 and also on a Rinsate Blank and Trip Blank. The validation was performed in accordance with the "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review". Precision Testing Labs performed the analysis using EPA Method 524.2. The samples reviewed included:

Field Sample ID	Lab Sample ID
RC-ER-33-0300	A-104.1
RC-ER-00-0300	A-104.2
RC-EL-21-0300	A-104.3
RC-EL-00-0300	A-104.4
RC-EC-70-0300	A-104.5
RC-EC-33-0300	A-104.6
RC-EC-00-0300	A-104.7
RC-EC-00-0300A	A-104.8
Rinsate Blank	A-104.9
Trip Blank	A-104.10

Items reviewed and actions taken were as follows:

√ Method:

The ten samples were analyzed for BTEXS by method USEPA 524.2 on March 18 and 19, 2000.

√ Holding Time:

All Samples were analyzed within the 14-day holding time.

√ Blanks:

No target compounds were detected in the associated method blank.

√ System Monitoring Compounds:

The "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review" indicate that "Recoveries for system monitoring compounds in volatile samples and blanks must be within the limits specified in the Method." However, Method 524.2 does not specify a required recovery. Nevertheless, 4-

bromofluorobenzene and 1,2-dichlorobenzene-d4 surrogate recoveries were within 98-125 percent and this is acceptable.

Internal Standards:

All fluorobenzene internal standards were within the established criteria for area internal standard and retention time.

GC/MS Instrument Performance Check:

All bromofluorobenzene (BFB) tunes met the ion abundance criteria. Analysis of the instrument performance check solution was performed at the beginning of each 12-hr period during which the samples were analyzed.

Initial Calibrations:

The initial calibration performed on October 21, 1999 for Instrument HP5971A met the 30 percent relative standard deviation (RSD) and 0.05 minimum relative response factor criteria for all compounds.

V Continuing Calibrations:

Continuing calibration was run and compared to the correct initial calibration. All continuing calibrations met the 25 percent difference and minimum relative response factor criteria for all compounds.

Matrix Spike/Duplicate:

The matrix spike/duplicate results for recovery and RPD were within the Quality Control limits. However, the matrix spike recover analysis was performed on a blank since not enough sample was available.

√ Target Compound Indentification/Quantitation:

No problems were identified with compound identification or quantities.

 \checkmark Field Duplicate:

A field duplicate was collected during this sampling event. The duplicate sample was denoted by an "A" at the end of the sample name. The pair is RC-EC-00-0300 and duplicate RC-EC-00-0300A. Table 1 below summarizes the RPD for the sample/duplicate pair1.

Table 1: Relative Percent Difference (RPD)

Sample Name	Benzene (ppb)	RPD (%)	Toluene (ppb)	RPD (%)	Ethyl- Benzene (ppb)	RPD (%)	Xylene (ppb)	RPD (%)	Styrene (ppb)	RPD (%)
RC-EC-00-0300	1.01	34	4.72.	112	2.04	159	12.03	154	ND	NA
RC-EC-00-0300A	0.71		1.32		0.23		1.53		ND_	NA

ND = Non Detect

NA = Not Applicable

 $\sqrt{}$ Summary:

No inconsistencies were noted except that poor agreement was seen between the duplicate sample pair RC-EC-00-0300 and RC-EC-00-0300A. (See Table 1). No BTEXS compounds were detected in either the trip blank or the field blank.

= duplicate concentration

The equation for calculating RPD is: $_{R}$ $_{P}$ $_{D}$ = 2 * $\frac{|S - D|}{|S + D|}$ * 1 0 0 where S = sample concentration and D

Address 1565 Rt. 37 - # 4, Toms River, NJ 08755 Tel. (732) 818-3675 Fax (732) 818-3676

Corporate
Address 726 Bernice Ct. Toms River, NJ 08753
Tel. (732) 914-1515 Fax (732) 914-1616

ANALYTICAL REPORT

For Applied Hydrology Associates, Inc. Monaca, PA 15061

Project: Raccoon Creek

Lab

Address 1565 Rt. 37 - # 4, Toms River, NJ 08755 Tel. (732) 818-3675 Fax (732) 818-3676

Corporate

Address 726 Bernice Ct. Toms River, NJ 08753 Tel. (732) 914-1515 Fax (732) 914-1616

ANALYTICAL DATA REPORT

Applied Hydrology Associates, Inc. Monaca, PA 15061 **Project: Raccoon Creek**

Sample ID		Lab ID #

RC-ER-33-0300		A-104.1
RC-ER-00-0300		A-104.2
RC-EL-21-0300		A-104.3
RC-EL-00-0300		A-104.4
RC-EC-70-0300	5	A-104.5
RC-EC-33-0300		A-104.6
RC-EC-00-0300		A-104.7
RC-EC-00-0300A		A-104.8
RINSATE BLANK		A-104.9
TRIP BLANK		A-104.10

V. Bandeira Manager

Address 1565 Rt. 37 - # 4, Toms River, NJ 08755 Tel. (732) 818-3675 Fax (732) 818-3676

Corporate
Address 726 Bernice Ct. Toms River, NJ 08753 Tel. (732) 914-1515 Fax (732) 914-1616

TABLE OF CONTENTS

Laboratory Chronicle	page	1
Non-Conformance Summary	page	2
Methodology Summary	page	3
Analytical Results	page	5
QA/QC Data	page	6
Chain of Custody	page	38

Review & Approval

Lab Address 1565 Rt. 37 - # 4, Toms River, NJ 08755 Tel. (732) 818-3675 Fax (732) 818-3676

Corporate

Address 726 Bernice Ct. Toms River, NJ 08753 Tel. (732) 914-1515 Fax (732) 914-1616

LABORATORY CHRONICLE

Customer Name Applied Hydro Date Received: 03/15/2000 Date Sampled: 03/14/2000 Sample ID: As per chain of cu			
Organic Extraction:			
1 Acids 2 Base / Neutrals 3 Pesticides/PCB's 4 TPHC		//	
Analysis:			
1 Volatiles 2 Acids 3 Base/Neutrals 4 Pesticides/PCB's 5 TPHC			
Inorganics:			
1 Metals 2 Cyanides 3 Phenols			
Other Analysis:			
Supervisor	00	. (%)	

NON-CONFORMANCE SUMMARY

Precision Testing Labs received 10 water samples including Rinsate Blank and Trip blank for VOA (EPA 524.2) from AHA on 15 March 2000. Samples consisted of 10 vials.

Matrix spike recovery analysis was performed on a blank since not enough sample was provided, results are attached.

All analyses were performed within the required holding time.

STANDARD OPERATING PROCEDURE METHOD 524.2

1. Scope

This is the general method for the procedure used to identify purgeable volatile organics in portable water. The sample is purged with ultra high purity helium and concentrated into a trap. The volatiles are then thermally desorbed onto a megabore column and identified using a mass spectrometer detector.

- 2. Equipment and Apparatus
- A. Sample containers- 40ml screw caps amber vials.
- B. Purge and Trap System.
 - 1. 25cm VOCARB 3000 trap.
- C. Glassware
 - 1. 20 ml fritted purging vessels.
 - 2. 25 ml teflon sealed syringe with lever lock assembly.
 - 3. 10 μL syringes.
- D. Gas Chromographic / Mass Spectrometer.
 - 1. Column type J&W

75 m, 0.53 mm ID, DB624 3 microns

- E. Apparatus Conditions
 - 1. Tekmar (purge and trap)

a. Purge time : 2 min.

b. Desorb time and temp.: 250° for 2 min.
c Bake time and temp.: 260° for 12 min.

c. Bake time and temp. : 260° for 12 m
d. Flow rate : 15 cc/min.

d. Flow rate : 15 cc/r

2. GC Conditions

a.	Column flow	15 cc/min.
b.	Initial temp.	35° C
c.	Ramping Rate	6° C/min.
d.	Final temp.	200° C
e.	Run time	47.25 min.
f.	Initial time	6 min.

- 3. Stock Standards
- A. Internal Standard
 - 1. Flourobenzene
- B. Surrogates
 - 1. 1,2-dichlorobenzene-d4
 - 2. 4-bromoflurobenzene
- C. Prepare standard solutions for all target compounds and surrogates at 20 ppm.
- D. Prepare internal standard at 20 ppm in methanol.
 - 1. Prepare all standards and store in teflon sealed 1 ml vials.

4. Run Sequence

- A. Tune Instrument
- 1. Inject 1μL of 25 ppm BFB into GC.
 - a. Tune must pass against criteria.
 - b. Tune must be run before any samples, blank or calibrations can be run.
 - c. From time to tune 12 hours are available to run all QC data and samples.

B. Three Point Calibration Curve

- 1. Purge five (3) concentrations of standard solutions containing all the target analysis at 1 ppb, 2 ppb, 5 ppb.
- 2. The above standard must be run within 12 hours of injecting the BFB tune.
- 3. Created a calibration curve with the above standard runs.
 - a. If the 30% RSD deviation is exceeded the standards must be run again (still within 12 hours)
- 4. Create an identification file from this calibration curve for automated quantification.
- C. If time remains in the 12-hour run period go to step F.
- D. If the 12-hour period has expired, a new tune must be injected and a new sequence must be started.
- E. Once an initial calibration curve is established a continuing calibrations check may be run.

 A continuing calibration check is required every time the mass spectrometer is tuned.
 - 1. 2 ppb concentration of all target compounds is purged and quanted against current ID file.
 - 2. Check the response factors of this run against the average RF of the calibration file. The RF of the continuing calibration must be within \pm 50% D (difference) of the 5 point for all compounds.
 - The area counts of internal standard and surrogates must not be decreased by >30% from the most recent continuing calibration standard nor decrease by >50% from the initial calibration standard.

F. Daily Blank

- 1. Purge 20 ml of laboratory reagent water (nanopure) with 5 ppb internal standard and 5 ppb each surrogate.
- 2. Run this blank and quant against current ID file.
- 3. If blank does not meet criteria, it must be rerun before analyzing any samples.

G. Samples

- 1. Fill 25 ml syringe until it overflows with sample. Then adjust the volume to 20 ml exactly.
- 2. Inject 5 μl each 25 ppm internal standard and surrogate standard solution into each sample.
- 3. Run and quant against the current 5 point calibration curves.
- 4. Any sample with target compound over 5 ppb must be rerun at the appropriate dilution.
- 5. Any sample not injected in 12-hour period must be rerun.

H. Quality Control Sample (QCS)

1. Analyze a QCS from an external source at least quarterly.

Address 1565 Rt. 37 - # 4, Toms River, NJ 08755 Tel. (732) 818-3675 Fax (732) 818-3676

Corporate

Address 276 Bernice Ct. Toms River, NJ 08753 Tel. (732) 914-1515 Fax (732) 914-1616

CERTIFICATE OF ANALYSIS

Customer:

Lyondell Chemical

Sample:

Aqueous Samples

Date Sampled:

14 March 2000

Lab ID:

A-104

Reference:

AHA / Monaca

20 March 2000

Units: μg/L

Sample ID	Benzene	Toluene	Ethylbenzene	Xylene	Styrene
RC-ER-33-0300	0.74	1,30	0.35	2.13	< 0.58
RC-ER-00-0300	0.58	1.05	0.34	2.08	< 0.58
RC-EL-21-0300	0.87	< 0.6	< 0.22	1.27	< 0.58
RC-EL-00-0300	0.78	< 0.6	< 0.22	0.61	< 0.58
RC-EC-70-0300	0.18	< 0.6	< 0.22	< 0.22	< 0.58
RC-EC-33-0300	0.87	1.87	0.40	2.75	< 0.58
RC-EC-00-0300	1.01	4.74	2.04	12.03	< 0.58
RC-EC-00-0300A	0.71	1.32	0.23	1.53	< 0.58
Rinsate Blank	< 0.13	< 0.6	< 0.22	< 0.22	< 0.58
Trip Blank	< 0.13	< 0.6	< 0.22	< 0.22	< 0.58

Manager

Vial: 11

Inst : 5971 - In

Operator: vb

Data File : C:\HPCHEM\1\DATA\V0088.D

Acq On : 18 Mar 2000 10:51 pm

Sample : A-104.1 Misc : AHA - Lyondell - RC-ER-33-0300 Multiplr: 1.00

MS Integration Params: rteint.p

Quant Results File: RUN524.RES Quant Time: Mar 20 11:26 2000

Quant Method : C:\HPCHEM\1\METHODS\RUN524.M (RTE Integrator)

Title : 524.2 Purgable Organics Last Update : Mon Mar 20 10:48:36 2000

Response via : Initial Calibration

DataAcq Meth : RUN524

Internal Standards	R.T.	QIon	Response Co	onc Ur	nits Dev	(Min)
1) Fluorobenzene	12.69	96	657396	5.00	ug/L	0.02
System Monitoring Compounds 43) 4-bromofluorobenzene Spiked Amount 5.000	25.84	95	168219 Recovery		ug/L 98.80%	0.01
55) 1,2-dichlorobenzene-d4 Spiked Amount 5.000	31.02	152	127007 Recovery		ug/L 104.20%	0.00
Target Compounds					Qva	alue
19) Benzene	11.85	78	95440	0.74	ug/L	96
26) Toluene	17.58	91	163041		ug/L	97
35) Ethylbenzene	22.42	91	49850		ug/L	90
36) m&p-xylenes	22.81	106	101222		ug/L	96
37) o-xylene	24.09		111601		ug/L	89
45) n-propylbenzene	26.78		32830		ug/L	89
48) 1,3,5-trimethylbenzene			48168		ug/L	100
50) 1,2,4-trimethylbenzene	28.69	105	201574	2.20	ug/L	99

^{(#) =} qualifier out of range (m) = manual integration V0088.D RUN524.M Mon Mar 20 11:40:00 2000

Data File : C:\HPCHEM\1\DATA\V0088.D Acq On

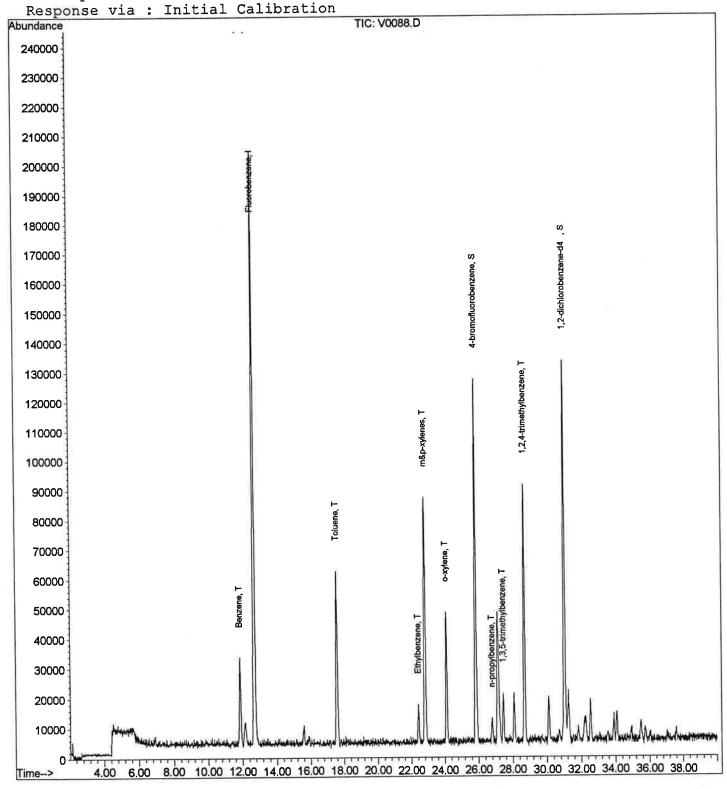
: 18 Mar 2000 10:51 pm

Vial: 11 Operator: vb

: A-104.1 Sample

: 5971 - In Inst Multiplr: 1.00

: AHA - Lyondell - RC-ER-33-0300 Misc


MS Integration Params: rteint.p Quant Time: Mar 20 11:26 2000

Method

Quant Results File: RUN524.RES

: C:\HPCHEM\1\METHODS\RUN524.M (RTE Integrator)

: 524.2 Purgable Organics Title Last Update : Mon Mar 20 10:48:36 2000

Quantitation Report (QT Reviewed)

Vial: 12

Multiplr: 1.00

Inst : 5971 - In

Data File : C:\HPCHEM\1\DATA\V0089.D

Acq On : 18 Mar 2000 11:39 pm Operator: vb

Sample : A-104.2 Misc : AHA - Lyondell - RC-ER-00-0300

MS Integration Params: rteint.p

Quant Results File: RUN524.RES Quant Time: Mar 20 11:25 2000

Quant Method : C:\HPCHEM\1\METHODS\RUN524.M (RTE Integrator)

Title : 524.2 Purgable Organics Last Update : Mon Mar 20 10:48:36 2000

Response via : Initial Calibration

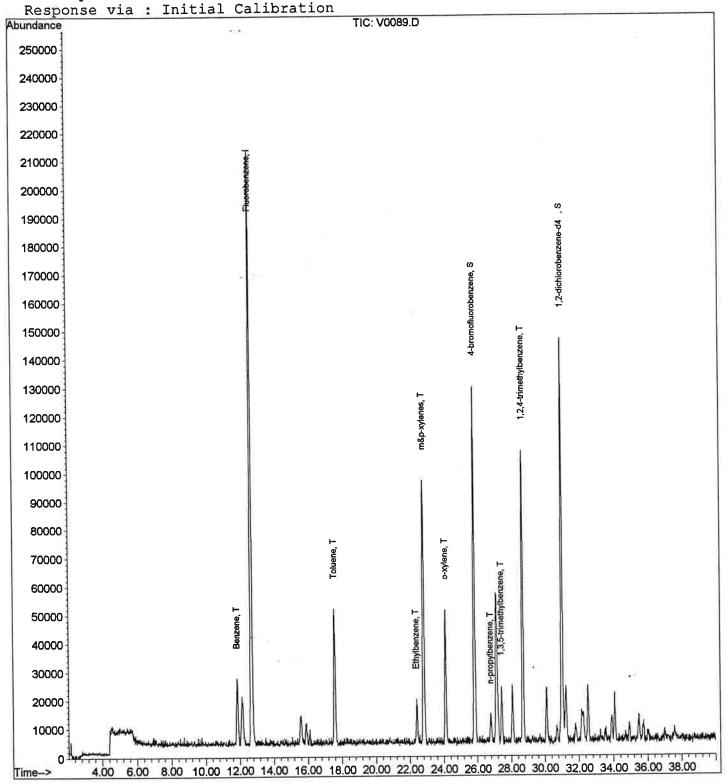
DataAcq Meth : RUN524

Internal Standards	R.T.	QIon	Response C	onc Ur	nits D	ev(Min)
1) Fluorobenzene	12.69	96	703063	5.00	ug/L	0.02
System Monitoring Compounds 43) 4-bromofluorobenzene Spiked Amount 5.000	25.83	95	177529 Recovery	=	ug/L 97.6	0%
55) 1,2-dichlorobenzene-d4 Spiked Amount 5.000	31.01	152	135878 Recovery		ug/L 104.2	
Target Compounds						Qvalue
19) Benzene	11.85	78	80800		ug/L	100
26) Toluene	17.56		140877		ug/L	98
35) Ethylbenzene	22.41		51119		ug/L	97
36) m&p-xylenes	22.80	106	107905		ug/L	96
37) o-xylene	24.09	91	114771		ug/L	95
45) n-propylbenzene	26.77		41477		ug/L	97
48) 1,3,5-trimethylbenzene		105			ug/L	96
50) 1,2,4-trimethylbenzene	28.68	105	236676	2.41	ug/L	97

^{(#) =} qualifier out of range (m) = manual integration V0089.D RUN524.M Mon Mar 20 11:40:10 2000

Vial: 12 Data File : C:\HPCHEM\1\DATA\V0089.D Operator: vb : 18 Mar 2000 11:39 pm Acq On

: A-104.2 Sample


: AHA - Lyondell - RC-ER-00-0300 Misc

MS Integration Params: rteint.p

Quant Results File: RUN524.RES Quant Time: Mar 20 11:25 2000

: C:\HPCHEM\1\METHODS\RUN524.M (RTE Integrator) Method

: 524.2 Purgable Organics Title Last Update : Mon Mar 20 10:48:36 2000

: 5971 - In

Inst

Multiplr: 1.00

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\V0090.D

Vial: 13

Acq On : 19 Mar 2000 12:29 am

Operator: vb

: A-104.3 Sample

Inst : 5971 - In

Misc : AHA - Lyondell - RC-EL-21-0300

Multiplr: 1.00

MS Integration Params: rteint.p Quant Time: Mar 20 11:24 2000

Quant Results File: RUN524.RES

Quant Method : C:\HPCHEM\1\METHODS\RUN524.M (RTE Integrator)

Title : 524.2 Purgable Organics Last Update : Mon Mar 20 10:48:36 2000

Response via : Initial Calibration

DataAcq Meth : RUN524

Internal Standards	R.T.	QIon	Response C	onc Ui	nits Dev	(Min)
1) Fluorobenzene	12.69	96	673178	5.00	ug/L	0.02
System Monitoring Compounds 43) 4-bromofluorobenzene Spiked Amount 5.000	25.84	95	Recovery	=	ug/L 96.40%	0.01
55) 1,2-dichlorobenzene-d4 Spiked Amount 5.000	31.02	152	127885 Recovery		ug/L 102.40%	0.00
Target Compounds					Qva	alue
19) Benzene	11.85	78	115365		ug/L	94
26) Toluene	17.57	91			ug/L	96
35) Ethylbenzene	22.42		22437		ug/L	97
36) m&p-xylenes	22.81		60115		ug/L	99
37) o-xylene	24.09		69867		ug/L	96
48) 1,3,5-trimethylbenzene	27.43				ug/L	92
50) 1,2,4-trimethylbenzene	28.68	105	145130	1.55	ug/L	98

^{(#) =} qualifier out of range (m) = manual integration V0090.D RUN524.M Mon Mar 20 11:40:22 2000

Data File : C:\HPCHEM\1\DATA\V0090.D

: 19 Mar 2000 12:29 am

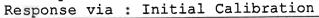
Vial: 13 Operator: vb

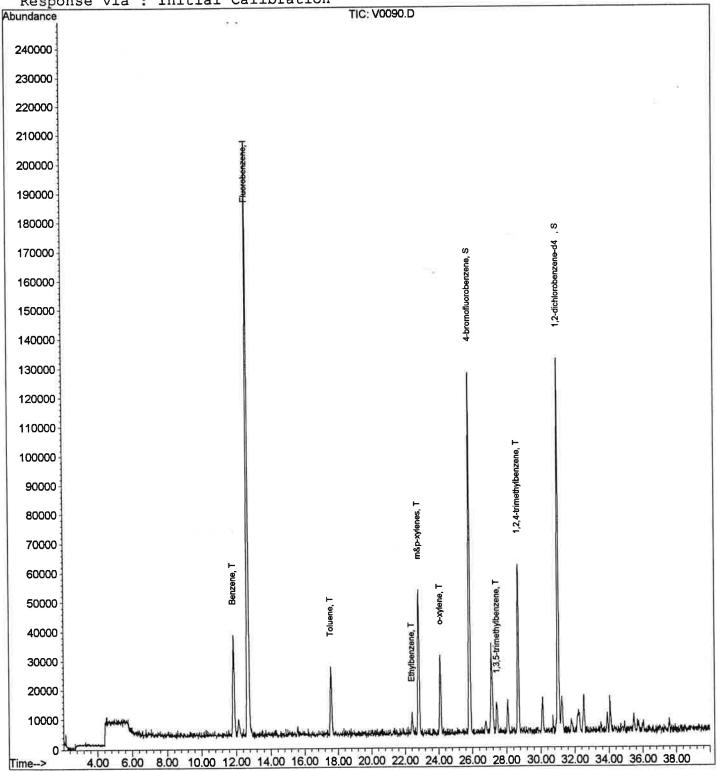
Sample : A-104.3

Acq On

: 5971 - In Inst

: AHA - Lyondell - RC-EL-21-0300 Misc


Multiplr: 1.00


MS Integration Params: rteint.p

Quant Results File: RUN524.RES Quant Time: Mar 20 11:24 2000

: C:\HPCHEM\1\METHODS\RUN524.M (RTE Integrator) Method

: 524.2 Purgable Organics Title Last Update : Mon Mar 20 10:48:36 2000

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\V0091.D : 19 Mar 2000 Acq On

Vial: 14 Operator: vb

Inst : 5971 - In

Sample : A-104.4 Misc : AHA - Lyondell - RC-EL-00-0300

Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Mar 20 11:23 2000

Quant Results File: RUN524.RES

Quant Method: C:\HPCHEM\1\METHODS\RUN524.M (RTE Integrator)

Title : 524.2 Purgable Organics Last Update : Mon Mar 20 10:48:36 2000

Response via: Initial Calibration

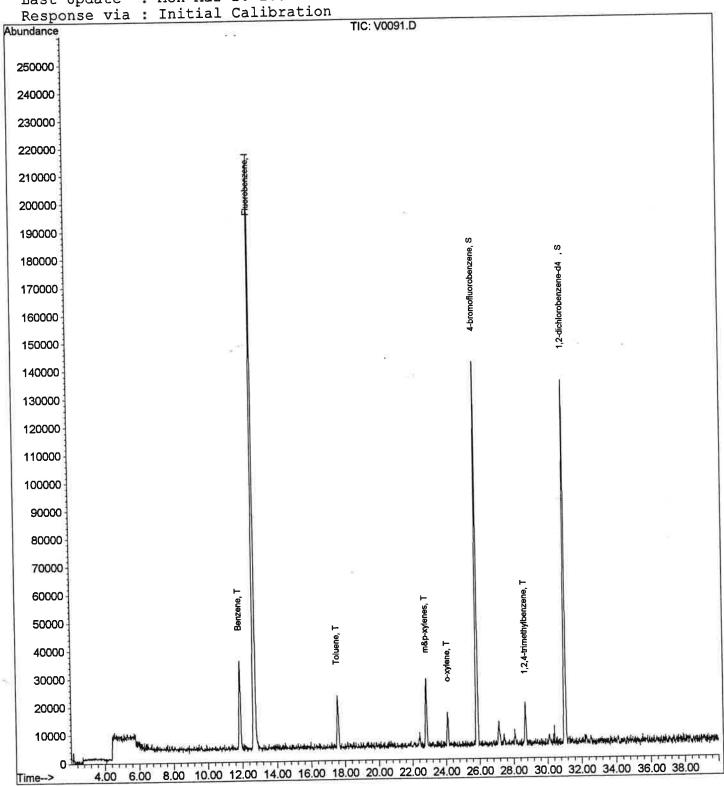
DataAcq Meth : RUN524

Internal Standards	R.T.	QIon	Response Co	onc U	nits Dev(Min)
1) Fluorobenzene	12.70	96	715830	5.00	ug/L	0.03
System Monitoring Compounds 43) 4-bromofluorobenzene Spiked Amount 5.000	25.83	95	184038 Recovery		ug/L 99.40%	0.00
55) 1,2-dichlorobenzene-d4 Spiked Amount 5.000	31.01	152	137646 Recovery	5.18	ug/L - 103.60%	0.01
Target Compounds					_	lue
19) Benzene	11.85	78	109759		ug/L	98
26) Toluene	17.56	91	58373		ug/L	88
36) m&p-xylenes	22.80	106	31422		ug/L	92
37) o-xylene	24.08	91	34950		ug/L	90
50) 1,2,4-trimethylbenzene	28.67	105	47837	0.48	ug/L	92

^{(#) =} qualifier out of range (m) = manual integration V0091.D RUN524.M Mon Mar 20 11:40:32 2000

Data File : C:\HPCHEM\1\DATA\V0091.D Vial: 14 Operator: vb : 19 Mar 2000 Acq On : 5971 - In

Inst : A-104.4 Sample


Multiplr: 1.00 : AHA - Lyondell - RC-EL-00-0300 Misc

MS Integration Params: rteint.p

Quant Results File: RUN524.RES Quant Time: Mar 20 11:23 2000

: C:\HPCHEM\1\METHODS\RUN524.M (RTE Integrator) Method

: 524.2 Purgable Organics Title Last Update : Mon Mar 20 10:48:36 2000

Quantitation Report (QT Reviewed)

Vial: 15 Data File : C:\HPCHEM\1\DATA\V0092.D Acq On : 19 Mar 2000 2:07 am Operator: vb

Inst : 5971 - In Sample : A-104.5 Misc : AHA - Lyondell - RC-EC-70-0300

Multiplr: 1.00

MS Integration Params: rteint.p

Quant Results File: RUN524.RES Quant Time: Mar 20 11:23 2000

Quant Method : C:\HPCHEM\1\METHODS\RUN524.M (RTE Integrator)

Title : 524.2 Purgable Organics Last Update : Mon Mar 20 10:48:36 2000

Response via : Initial Calibration

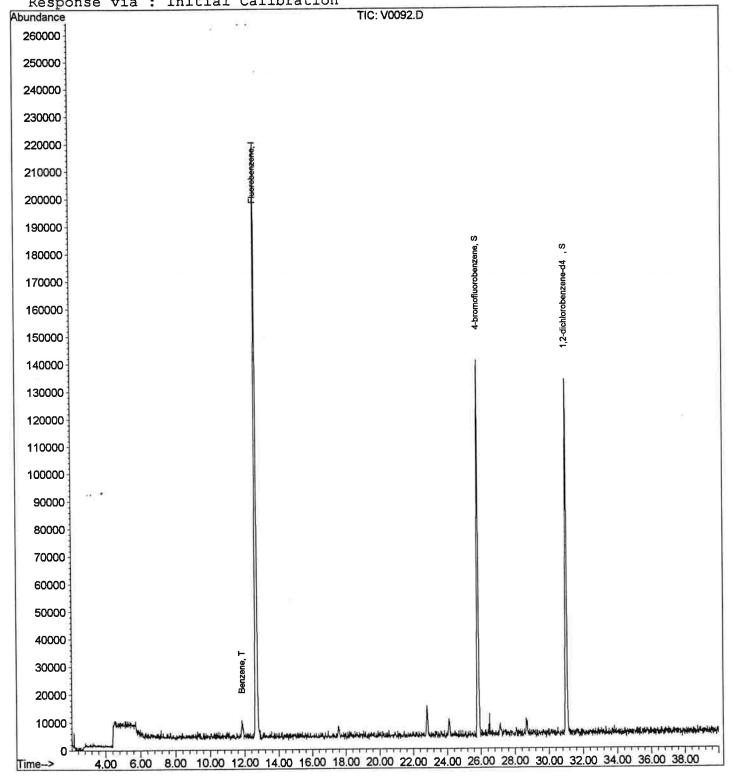
DataAcq Meth : RUN524

Internal Standards	R.T.	QIon	Response C	onc U	nits Dev(Min)
1) Fluorobenzene	12.69	96	711244	5.00	ug/L 0.02
System Monitoring Compounds 43) 4-bromofluorobenzene Spiked Amount 5.000 55) 1,2-dichlorobenzene-d4 Spiked Amount 5.000	25.84 31.01	95 152	183732 Recovery 135371 Recovery	= 5.13	ug/L 0.01 99.80% ug/L -0.01 102.60%
Target Compounds 19) Benzene	11.86	78	24555	0.18	Qvalue ug/L 100

Section 200

^{(#) =} qualifier out of range (m) = manual integration V0092.D RUN524.M Mon Mar 20 11:40:40 2000

Sample : A-104.5 Inst : 5971 - In


Misc : AHA - Lyondell - RC-EC-70-0300 Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Mar 20 11:23 2000 Quant Results File: RUN524.RES

Method : C:\HPCHEM\1\METHODS\RUN524.M (RTE Integrator)

Title : 524.2 Purgable Organics
Last Update : Mon Mar 20 10:48:36 2000
Response via : Initial Calibration

Quantitation Report (QT Reviewed)

Vial: 16 Data File : C:\HPCHEM\1\DATA\V0093.D Operator: vb Acq On : 19 Mar 2000 2:56 am

Inst : 5971 - In Sample : A-104.6 Misc : AHA - Lyondell - RC-EC-33-0300

Multiplr: 1.00

MS Integration Params: rteint.p

Quant Results File: RUN524.RES Quant Time: Mar 20 11:22 2000

Quant Method : C:\HPCHEM\1\METHODS\RUN524.M (RTE Integrator)

Title : 524.2 Purgable Organics Last Update : Mon Mar 20 10:48:36 2000

Response via: Initial Calibration

DataAcq Meth : RUN524

Internal Standards	R.T.	QIon	Response C	onc Ur	nits Dev	(Min)
1) Fluorobenzene	12.69	96	753555	5.00	ug/L	0.02
System Monitoring Compounds 43) 4-bromofluorobenzene Spiked Amount 5.000	25.83	95	194511 Recovery		ug/L 99.80%	0.00
55) 1,2-dichlorobenzene-d4 Spiked Amount 5.000	31.02	152	141236 Recovery		ug/L 101.00%	0.00
Target Compounds					Qv	alue
19) Benzene	11.84	78	128321		ug/L	94
26) Toluene	17.58	91	268856		ug/L	97
35) Ethylbenzene	22.42	91	65438		ug/L	98
36) m&p-xylenes	22.80	106	155923		ug/L	96
37) o-xylene	24.09	91	159512		ug/L	99
45) n-propylbenzene	26.79	91	40080		ug/L	98
48) 1,3,5-trimethylbenzene	27.43		67864		ug/L	99
50) 1,2,4-trimethylbenzene	28.68	105	274698	2.61	ug/L	96

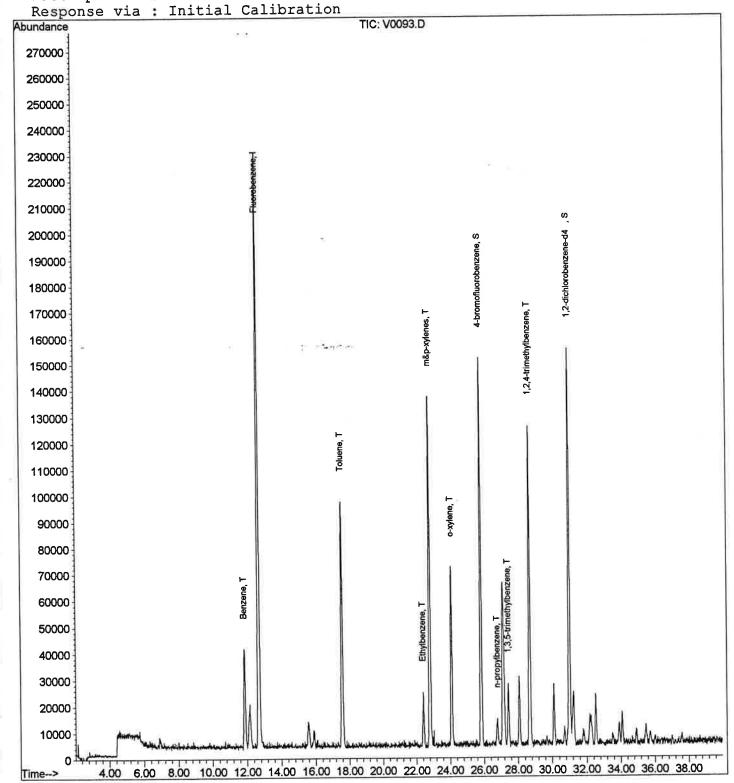
^{(#) =} qualifier out of range (m) = manual integration V0093.D RUN524.M Mon Mar 20 11:40:49 2000

Data File : C:\HPCHEM\1\DATA\V0093.D : 19 Mar 2000 Acq On

: A-104.6 Sample

Operator: vb : 5971 - In Inst Multiplr: 1.00

Vial: 16


: AHA - Lyondell - RC-EC-33-0300 Misc

MS Integration Params: rteint.p Quant Time: Mar 20 11:22 2000

Quant Results File: RUN524.RES

: C:\HPCHEM\1\METHODS\RUN524.M (RTE Integrator) Method

: 524.2 Purgable Organics Title Last Update : Mon Mar 20 10:48:36 2000

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\V0094.D

Vial: 2 Acq On : 19 Mar 2000 3:45 am Operator: vb

Misc : AHA - Lyondell - RC-EC-00-0300

Inst : 5971 - In : A-104.7 Sample Multiplr: 1.00

MS Integration Params: rteint.p

Quant Results File: RUN524.RES Quant Time: Mar 20 11:21 2000

Quant Method : C:\HPCHEM\1\METHODS\RUN524.M (RTE Integrator)

Title : 524.2 Purgable Organics Last Update : Mon Mar 20 10:48:36 2000 Response via : Initial Calibration

DataAcq Meth : RUN524

Internal Standards	R.T.	QIon	Response	Conc Ur	nits I	Dev(Min)
1) Fluorobenzene	12.68	96	597116	5.00	ug/L	0.00
System Monitoring Compounds						
43) 4-bromofluorobenzene	25.83	95			ug/L 111.0	
Spiked Amount 5.000 55) 1,2-dichlorobenzene-d4	31.03	152	Recover	4	ug/L	
Spiked Amount 5.000	01.00	102	Recover		125.0	
Target Compounds						Qvalue
19) Benzene	11.85	78	118461	1.01	ug/L	90
26) Toluene	17.57	91	540748	4.74	ug/L	
35) Ethylbenzene	22.41	91	261477	2.04	ug/L	
36) m&p-xylenes	22.81	106	524514		ug/L	
37) o-xylene	24.09	91			ug/L	
45) n-propylbenzene	26.78	91	223136		ug/L	
48) 1,3,5-trimethylbenzene	27.43	105	339831		ug/L	
50) 1,2,4-trimethylbenzene	28.68	105	1349850	16.21	_	
53) 4-isopropyltoluene	29.70		54323		ug/L	
61) Naphthalene	37.58	128	71281	2.78	ug/L	96

^{(#) =} qualifier out of range (m) = manual integration V0094.D RUN524.M Mon Mar 20 11:41:00 2000

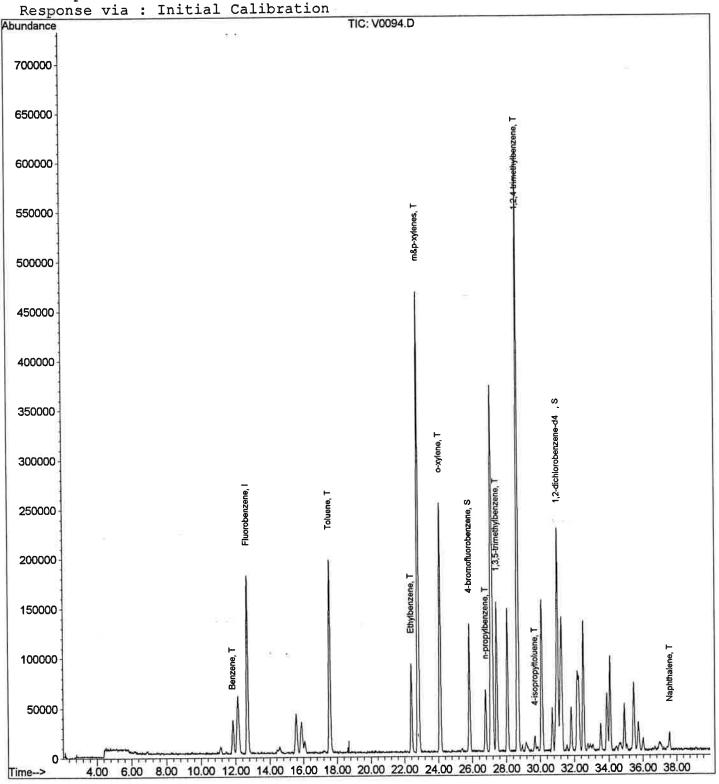
Data File : C:\HPCHEM\1\DATA\V0094.D
Acq On : 19 Mar 2000 3:45 am

ATA\V0094.D Vial: 2 3:45 am Operator: vb

Sample : A-104.7

Inst : 5971 - In

Misc : AHA - Lyondell - RC-EC-00-0300


Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Mar 20 11:21 2000 Quant Results File: RUN524.RES

Method : C:\HPCHEM\1\METHODS\RUN524.M (RTE Integrator)

Title : 524.2 Purgable Organics
Last Update : Mon Mar 20 10:48:36 2000

Vial: 3 Data File : C:\HPCHEM\1\DATA\V0095.D Operator: vb Acq On : 19 Mar 2000 4:34 am

Inst : 5971 - In : A-104.8 Sample

Misc : AHA - Lyondell - RC-EC-00-0300A Multiplr: 1.00

MS Integration Params: rteint.p

Quant Results File: RUN524.RES Quant Time: Mar 20 11:19 2000

Quant Method : C:\HPCHEM\1\METHODS\RUN524.M (RTE Integrator)

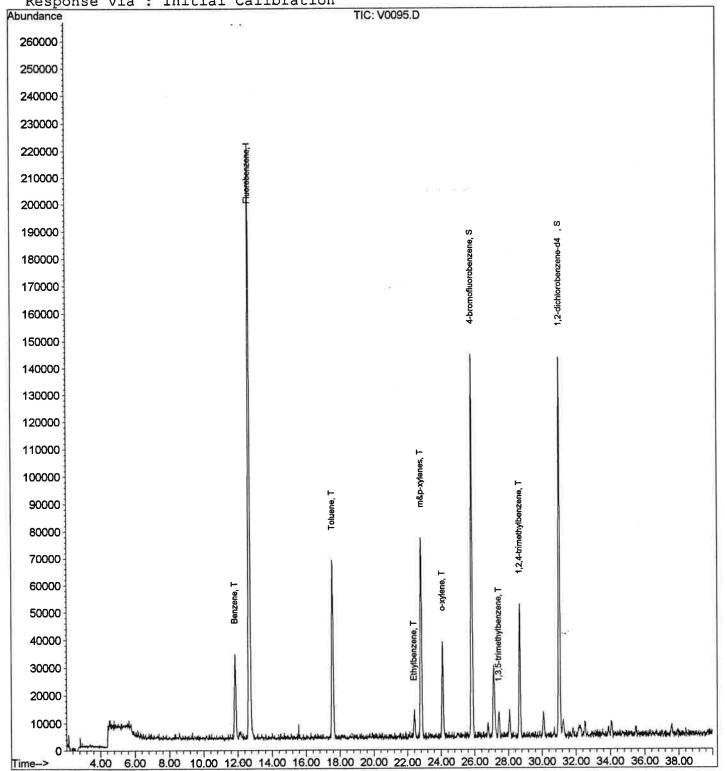
Title : 524.2 Purgable Organics Last Update : Mon Mar 20 10:48:36 2000 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)
1) Fluorobenzene	12.68	96	740318	5.00 ug/L 0.00
System Monitoring Compounds 43) 4-bromofluorobenzene Spiked Amount 5.000	25.83	95	191779 Recover	5.01 ug/L 0.00
55) 1,2-dichlorobenzene-d4 Spiked Amount 5.000	31.01	152	144543 Recover	5.26 ug/L -0.01 cy = 105.20%
Target Compounds				Qvalue
19) Benzene	11.84	78	103144	0.71 ug/L 94
26) Toluene	17.57	91	186278	1.32 ug/L 94
35) Ethylbenzene	22.40	91	35859	0.23 ug/L 93
36) m&p-xylenes	22.81	106	87321	0.73 ug/L 96
37) o-xylene	24.08	91	84894	0.80 ug/L 94
48) 1,3,5-trimethylbenzene	27.43	105		0.27 ug/L 76
50) 1,2,4-trimethylbenzene	28.68	105	121721	1.18 ug/L 97

^{(#) =} qualifier out of range (m) = manual integration V0095.D RUN524.M Mon Mar 20 11:41:12 2000

Data File: C:\HPCHEM\1\DATA\V0095.D Vial: 3
Acq On: 19 Mar 2000 4:34 am Operator: vb

Sample : A-104.8 Inst : 5971 - In


Misc : AHA - Lyondell - RC-EC-00-0300A Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Mar 20 11:19 2000 Quant Results File: RUN524.RES

Method : C:\HPCHEM\1\METHODS\RUN524.M (RTE Integrator)

Title : 524.2 Purgable Organics
Last Update : Mon Mar 20 10:48:36 2000
Response via : Initial Calibration

Data File : C:\HPCHEM\1\DATA\V0096.D Vial: 4 Operator: vb Acq On : 19 Mar 2000 5:24 am

Inst : 5971 - In : A-104.9 Sample

Misc : AHA - Lyondell - Rinsate Blank Multiplr: 1.00

MS Integration Params: rteint.p

Quant Results File: RUN524.RES Quant Time: Mar 20 11:14 2000

Quant Method : C:\HPCHEM\1\METHODS\RUN524.M (RTE Integrator)

Title : 524.2 Purgable Organics Last Update : Mon Mar 20 10:48:36 2000 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response C	onc U	nits Dev(Min)
1) Fluorobenzene	12.68	96	771693	5.00	ug/L 0.00
System Monitoring Compounds 43) 4-bromofluorobenzene Spiked Amount 5.000 55) 1,2-dichlorobenzene-d4 Spiked Amount 5.000	25.83 31.01	95 152	198544 Recovery 151600 Recovery	5.30	ug/L 0.00 99.40% ug/L -0.01 106.00%
Target Compounds 15) Chloroform 26) Toluene 50) 1,2,4-trimethylbenzene	10.42 17.57 28.68	83 91 105	19016 14879 13551	0.10	Qvalue ug/L 83 ug/L 81 ug/L 98

^{(#) =} qualifier out of range (m) = manual integration V0096.D RUN524.M Mon Mar 20 11:41:23 2000

Data File : C:\HPCHEM\1\DATA\V0096.D

: 19 Mar 2000 5:24 am

Vial: 4
Operator: vb

Acq On : 19 Mar : Sample : A-104.9

J. 21 GIII

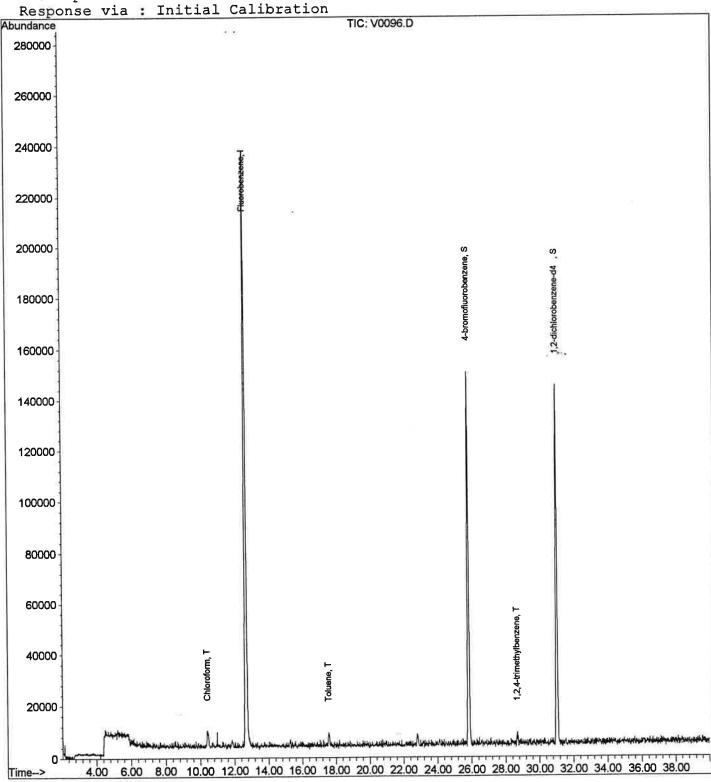
Inst : 5971 - In

Misc : AHA - L

: AHA - Lyondell - Rinsate Blank

Multiplr: 1.00

MS Integration Params: rteint.p


Quant Time: Mar 20 11:14 2000

Quant Results File: RUN524.RES

Method : C:\HPCHEM

: C:\HPCHEM\1\METHODS\RUN524.M (RTE Integrator)

Title : 524.2 Purgable Organics
Last Update : Mon Mar 20 10:48:36 2000

V0096.D RUN524.M

Mon Mar 20 11:41:25 2000

Data File : C:\HPCHEM\1\DATA\V0097.D

Vial: 5 Acq On : 19 Mar 2000 6:13 am Operator: vb

Inst : 5971 - In Multiplr: 1.00

Sample : A-104.10 Misc : AHA - Lyondell - Trip Blank

MS Integration Params: rteint.p

Quant Time: Mar 20 11:18 2000 Quant Results File: RUN524.RES

Quant Method : C:\HPCHEM\1\METHODS\RUN524.M (RTE Integrator)

Title : 524.2 Purgable Organics Last Update : Mon Mar 20 10:48:36 2000

Response via: Initial Calibration

Internal Standards	R.T.	QIon	Response C	onc U	nits Dev	(Min)
1) Fluorobenzene	12.68	96	771875	5.00	ug/L	0.00
System Monitoring Compounds 43) 4-bromofluorobenzene	25.83	95	199652		ug/L	0.00
Spiked Amount 5.000 55) 1,2-dichlorobenzene-d4 Spiked Amount 5.000	31.03	152	Recovery 152636 Recovery	5.33	100.00% ug/L 106.60%	0.00
Target Compounds					Qv	alue
15) Chloroform 24) Bromodichloromethane 31) Dibromochloromethane	10.42 15.27 20.09	83 83 129	197636 82748 17721	2.36	ug/L ug/L ug/L	99 98 90

^{(#) =} qualifier out of range (m) = manual integration V0097.D RUN524.M Mon Mar 20 11:41:30 2000

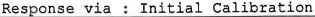
Data File : C:\HPCHEM\1\DATA\V0097.D Acq On

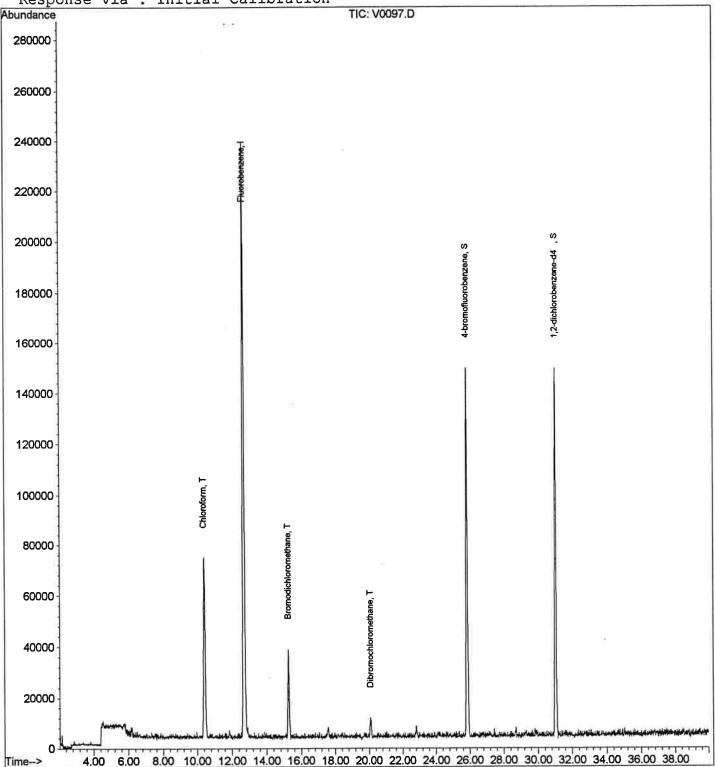
: 19 Mar 2000

Vial: 5 Operator: vb

Sample : A-104.10 : AHA - Lyondell - Trip Blank

: 5971 - In Inst Multiplr: 1.00


Misc


MS Integration Params: rteint.p Quant Time: Mar 20 11:18 2000

Quant Results File: RUN524.RES

: C:\HPCHEM\1\METHODS\RUN524.M (RTE Integrator) Method

: 524.2 Purgable Organics Title Last Update : Mon Mar 20 10:48:36 2000

RELIANCE LABORATORIES, INC. WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Matrix Spike - Sample No.: Blank

	SPIKE	SAMPLE	MS	MS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	% `	LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC #	
Benzene	3.00	0.00	3.17	106	(80-120)
Toluene	3.00	0.00	3.07	102	(80-120)
Ethylbenzene	3.00	0.00	3.07	102	(80-120)
m&p-xylenes	3.00	0.00	2.88	96	(80-120)
o-xylenes	3.00	0.00	3.03	101	(80-120)
Styrene	3.00	0.00	2.94	98	(80-120)

ADDED (ug/Kg)	CONCENTRATION (ug/Kg)		%	QC L	IMITS
	(ua/Ka)	DE0 4			
	(49,149)	REC #	RPD #	RPD	REC.
3.00	3.60	120	13	20	(80-120)
3.00	3.51	117	13	20	(80-120)
3.00	3.37	112	9	20	(80-120)
3.00	3.23	108	11	20	(80-120)
3.00	3.53	118	15	20	(80-120)
3.00	3.56	119	19	20	(80-120)
	3.00 3.00 3.00 3.00	3.00 3.51 3.00 3.37 3.00 3.23 3.00 3.53	3.00 3.51 117 3.00 3.37 112 3.00 3.23 108 3.00 3.53 118	3.00 3.51 117 13 3.00 3.37 112 9 3.00 3.23 108 11 3.00 3.53 118 15	3.00 3.51 117 13 20 3.00 3.37 112 9 20 3.00 3.23 108 11 20 3.00 3.53 118 15 20

#	Column to	he used to	flag recovery	and RPD	values with	an asterisk
₩.	Column to	DE GOEG LO	Had ICCOVCIT	and in	Talaco III	an actorion

Comments:		×	

Values outside of QC limits

4A VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

Lab Name:	PTL		Contract:	Blank1
Lab Code:		Case No.:	SAS No.: SE	OG No.:
Lab File ID:	V0086.D	-	Lab Sample ID:	vblk01
Date Analyze	ed: <u>03/18/00</u>		Time Analyzed:	21:13
GC Column:	DB-624 ID:	0.53 (mm)	Heated Purge: (Y/N) N
Instrument IC	D: HP-5971A			

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED
01	ER-33	A-104.1	V0088.D	22:51
02	ER-00	A-104.2	V0089.D	23:39
03	EL-21	A-104.3	V0090.D	00:29
04	EL-00	A-104.4	V0091.D	01:18
05	EC-70	A-104.5	V0092.D	02:07
06	EC-33	A-104.6	V0093.D	02:56
07	EC-00	A-104.7	V0094.D	03:45
80	EC-00A	A-104.8	V0095.D	04:34
09	RB	A-104.9	V0096.D	05:24
10	ТВ	A-104.10	V0097.D	06:13

COMMENTS		
901	 113333	

Data File : C:\HPCHEM\1\DATA\V0086.D

Vial: 9 Acq On : 18 Mar 2000 9:13 pm Operator: vb

Sample : vblk01
Misc : Method Blank : vblk01

Inst : 5971 - In

Multiplr: 1.00

MS Integration Params: rteint.p

Quant Results File: RUN524.RES Quant Time: Mar 20 11:27 2000

Quant Method : C:\HPCHEM\1\METHODS\RUN524.M (RTE Integrator)

Title : 524.2 Purgable Organics Last Update : Mon Mar 20 10:48:36 2000

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response Co	onc U	nits Dev	(Min)
1) Fluorobenzene	12.68	96	818465	5.00	ug/L	0.00
System Monitoring Compounds 43) 4-bromofluorobenzene Spiked Amount 5.000	25.84	95	252844 Recovery	=		0.01
55) 1,2-dichlorobenzene-d4 Spiked Amount 5.000	31.02	152	200353 Recovery		ug/L 132.00%	
Target Compounds					Qva	alue

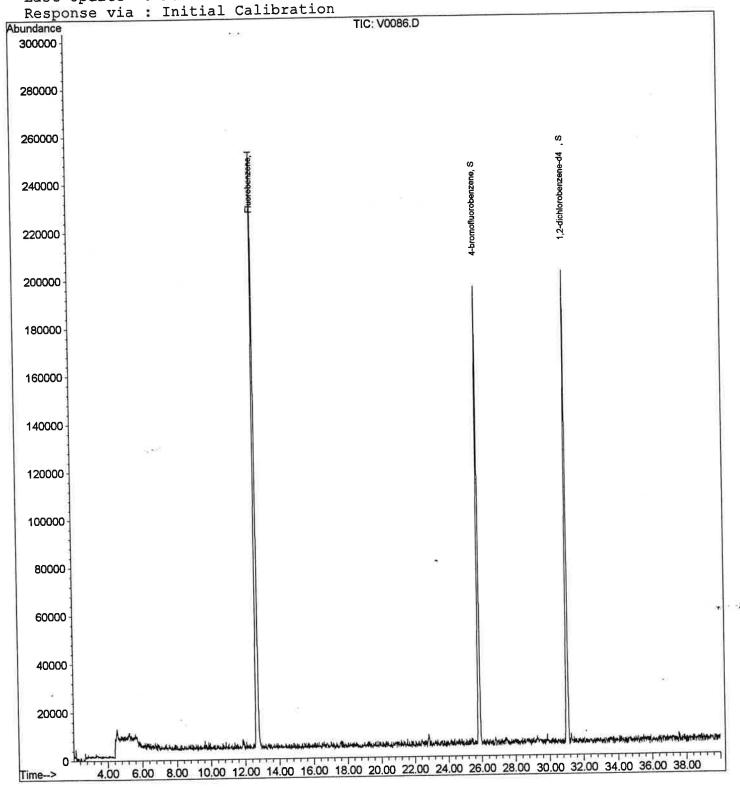
^{(#) =} qualifier out of range (m) = manual integration V0086.D RUN524.M Mon Mar 20 11:39:40 2000

Data File : C:\HPCHEM\1\DATA\V0086.D

: 18 Mar 2000 Acq On

Vial: 9 Operator: vb : 5971 - In Inst

Multiplr: 1.00


: vblk01 Sample : Method Blank Misc

MS Integration Params: rteint.p

Quant Results File: RUN524.RES Quant Time: Mar 20 11:27 2000

: C:\HPCHEM\1\METHODS\RUN524.M (RTE Integrator) Method

: 524.2 Purgable Organics Title Last Update : Mon Mar 20 10:48:36 2000

Data File : C:\HPCHEM\1\DATA\V0087.D

Vial: 10 Operator: vb

Acq On : 18 Mar 2000 10:02 pm Oper

Inst : 5971 - In

Sample : vblk02 Misc : Method Blank

Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Mar 20 11:27 2000

Quant Results File: RUN524.RES

Quant Method : C:\HPCHEM\1\METHODS\RUN524.M (RTE Integrator)

Title : 524.2 Purgable Organics
Last Update : Mon Mar 20 10:48:36 2000

Response via : Initial Calibration

DataAcq Meth : RUN524

Internal Standards	R.T.	QIon	Response C	onc U	Jnits Dev	(Min)
1) Fluorobenzene	12.68	96	837747	5.00	ug/L	0.00
System Monitoring Compounds 43) 4-bromofluorobenzene Spiked Amount 5.000	25.83	95	255807 Recovery	=	ug/L 118.00%	0.00
55) 1,2-dichlorobenzene-d4 Spiked Amount 5.000	31.02	152	211198 Recovery		136.00%	0.00
Target Compounds					Qv	alue

(#) = qualifier out of range (m) = manual integration V0087.D RUN524.M Mon Mar 20 11:39:50 2000

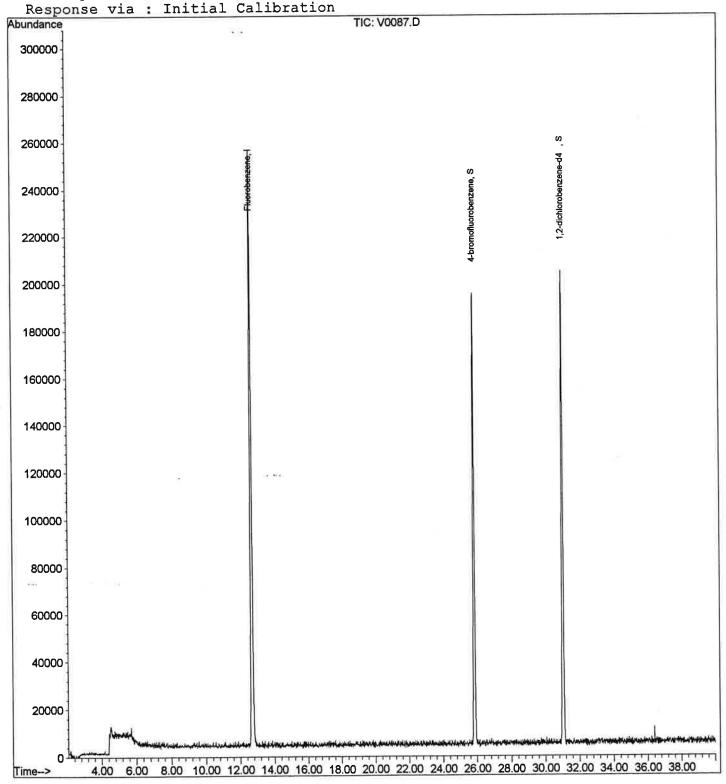
Data File : C:\HPCHEM\1\DATA\V0087.D Acq On

: 18 Mar 2000 10:02 pm

Sample : vblk02

Operator: vb : 5971 - In Inst

Vial: 10


Multiplr: 1.00 : Method Blank Misc

MS Integration Params: rteint.p

Quant Results File: RUN524.RES Quant Time: Mar 20 11:27 2000

: C:\HPCHEM\1\METHODS\RUN524.M (RTE Integrator) Method

: 524.2 Purgable Organics Title Last Update : Mon Mar 20 10:48:36 2000

5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name:	PTL			Contract:		
Lab Code:		Case No.:		SAS No.:	SDG N	No.:
Lab File ID:	V0082.D			BFB Injection	Date:	03/18/00
Instrument ID	: <u>HP-5971A</u>			BFB Injection	Time:	18:16
GC Column:	DB-624 II	D: 0.53	(mm)	Heated Purge	e: (Y/N)	N

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
50	8.0 - 40.0% of mass 95	16.8
75	30.0 - 66.0% of mass 95	39.8
95	Base peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	7.4
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	50.0 - 120.0% of mass 95	83.1
175	4.0 - 9.0% of mass 174	5.8 (7.0)1
176	93.0 - 101.0% of mass 174	80.0 (96.3)1
177	5.0 - 9.0% of mass 176	5.8 (7.3)2

¹⁻Value is % mass 174

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

ſ	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	VSTD005	ICC005	V0083.D	03/18/00	18:48
02	VSTD002	ICC002	V0084.D	03/18/00	19:36
03	VSTD001	ICC001	V0085.D	03/18/00	20:25
04	BLANK1	VBLK01	V0086.D	03/18/00	21:13
05	BLANK2	VBLK02	V0087.D	03/18/00	22:02
06	ER-33	A-104.1	V0088.D	03/18/00	22:51
07	ER-00	A-104.2	V0089.D	03/18/00	23:39
08	EL-21	A-104.3	V0090.D	03/19/00	00:29
09	EL-00	A-104.4	V0091.D	03/19/00	01:18
10	EC-70	A-104.5	V0092.D	03/19/00	02:07
11	EC-33	A-104.6	V0093.D	03/19/00	02:56
12	EC-00	A-104.7	V0094.D	03/19/00	03:45
13	EC-00A	A-104.8	V0095.D	03/19/00	04:34
14	RB	A-104.9	V0096.D	03/19/00	05:24
15	ТВ	A-104.10	V0097.D	03/19/00	06:13

²⁻Value is % mass 176

Data File : C:\HPCHEM\1\DATA\V0082.D

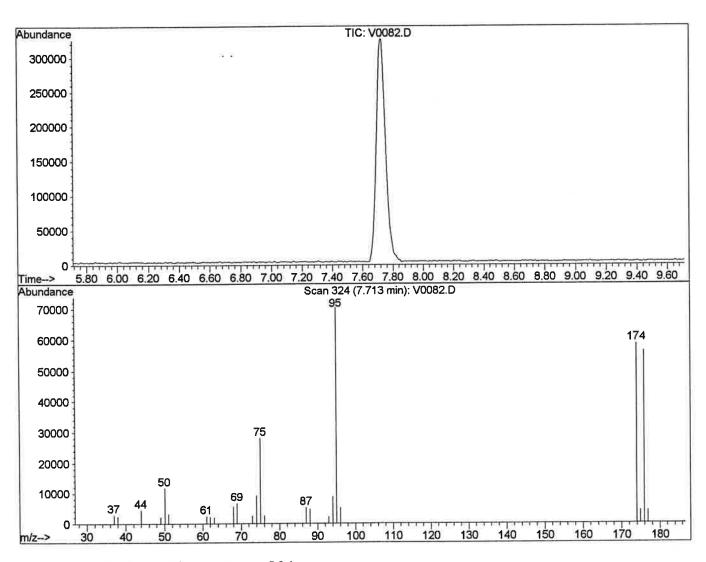
: 18 Mar 2000 6:16 pm

Operator: vb Inst : 5971 - In

Vial: 1

Sample : bfb

Acq On


Inst : 59/1 Multiplr: 1.00

Misc : bfb

MS Integration Params: rteint.p

Method : C:\HPCHEM\1\METHODS\RUN524.M (RTE Integrator)

Title : 524.2 Purgable Organics

Spectrum Information: Scan 324

	Target Mass	1	Rel. to Mass	I	Lower Limit%	1	Upper Limit%	1	Rel. Abn%	1	Raw Abn	1	Result Pass/Fail	1
1	50	1	95	1	 15	1	40	1	16.8	1	11799	1	PASS	Ĩ
i	75	i	95	i	30	ì	80	1	39.8	1	28064	U	PASS	1
i	95	î	95	i	100	Î	100	1	100.0	1	70432	1	PASS	1
î	96	î	95	í	5	Ì	9	1	7.4	1	5242	-1	PASS	1
Ė	173	î	174	î	0.00	Î	2	1	0.0	1	0	1	PASS	1
Ĥ	174	ì	95	Ť	50	Ì	100	-1	83.1	- 1	58552	1	PASS	1
ì	175	i	174	ì	5	i	9	1	7.0	1	4106	1	PASS	1
i	176	i	174	i	95	i	101	1	96.3	1	56360	Ť	PASS	I
i	177	Î	176	Î	5	İ	9	Ì	7.3	1	4094	١	PASS	ı

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: PTL		Cor	itract:			
Lab Code: Case	No.:		AS No.:	SDG No.:		_ ;
Instrument ID: HP-5971A	Calib	oration Da	ite(s):	03/18/00	03/18	3/00
	Calil	oration Tir		18:48	21	0:25
Heated Purge (Y/N): N	Calli	Jianon in		10.70		
GC Column: <u>DB-624</u> ID: <u>0.5</u>	3 (mm)					
LAB FILE ID: RRF1	= V00	85.D	RRF2	= V0084.D		
RRF5 = V0083.D	=			=		
						%
	DDE4	DDE3	RRF5		RRF	RSD
COMPOUND	RRF1	RRF2				
Dichlorodifluoromethane	0.154	0.135	0.136		0.142	7.3
Chloromethane	0.282	0.235	0.225		0.247	12.3
Vinyl chloride	0.268	0.242	0.238		0.249 0.182	6.4 15.1
Bromomethane	0.205	0.189	0.151		0.162	6.3
Chloroethane	0.166	0.155	0.147		0.156	5.3
Trichlorofluoromethane	0.382	0.346	0.354		0.301	7.0
1,1-dichloroethene	0.446	0.399	0.393 0.238		0.263	10.1
Methylene chloride	0.291	0.260	0.236		0.421	7.1
trans-1,2-dichloroethene	0.454	0.412 0.483	0.463		0.421	7.8
1,1-dichloroethane	0.538		0.463		0.433	3.4
2,2-dichloropropane	0.289	0.273	0.290		0.410	7.0
cis-1,2-dichloroethene	0.439	0.411	0.361		0.130	9.0
Bromochloromethane	0.140	0.133			0.130	8.2
Chloroform	0.471	0.428	0.401		0.455	4.4
1,1,1-trichloroethane	0.377	0.349	0.351 0.307		0.339	3.9
Carbon tetrachloride	0.302	0.285	0.307		0.399	5.6
1,1-dichloropropene	0.424	0.382	0.908		0.984	8.9
Benzene	1.079	0.965	0.908		0.163	8.2
1,2-dichloroethane	0.175	0.100	0.146		0.337	4.1
Trichloroethene	0.353		0.333		0.225	9.5
1,2-dichloropropane	0.248	0.219	0.207		0.080	3.1
Dibromomethane	0.078	0.080	0.207		0.227	10.4
Bromodichloromethane		0.221	0.207		0.216	1.2
cis-1,3-dichloropropene	0.215				0.956	7.7
Toluene	1.036	0.942	0.891		0.113	5.4
trans-1,3-dichloropropene	0.106	0.116	0.086		0.089	4.1
1,1,2-trichloroethane	0.093	0.089	0.086		0.296	10.7
Tetrachloroethene	0.333	0.278 0.165	0.276		0.168	8.0
1,3-dichloropropane	0.182	0.108	0.103		0.107	3.8
Dibromochloromethane	0.081	0.108	0.103		0.085	4.4
1,2-dibromoethane	0.602	0.567	0.505		0.558	8.8
Chlorobenzene	0.002	0.307	0.128		0.126	3.7
1,1,1,2-tetrachloroethane		1.053	0.120		1.075	8.5
Ethylbenzene	1.176 0.870	0.792	0.997		0.807	7.0
m&p-xylenes		0.792	0.761		0.721	10.6
o-xylene	0.803 0.621	0.707	0.515		0.721	9.4
Styrene					0.026	70.7
Bromoform	0.005		0.036		1.018	8.3
Isopropylbenzene	1.111	1.001	0.944	1	1.010	0.5

^{*} Compounds with required minimum RRF and maximum %RSD values. All other compounds must meet a minimum RRF of 0.010.

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: PTL		Co	ntract:			
Lab Code: Ca	se No.:		SAS No.:	SDG No.:	-	
Instrument ID: HP-5971A	Cali	bration Da	ate(s):	03/18/00	03/1	8/00
Heated Purge (Y/N): N	Cali	bration Ti	mes:	18:48	2	0:25
GC Column: DB-624 ID:	0.53 (mm)	>,			
LAB FILE ID: RR	F1 = V0	085.D	RRF2	= V0084.D		
RRF5 = V0083.D	ici =			=		
						%
COMPOUND	RRF1	RRF2	RRF5		RRF	RSD
Bromobenzene	0.326	0.281	0.250		0.286	13.4
1,1,2,2-tetrachloroethane	0.067	0.073	0.064		0.068	6.9
1,2,3-trichloropropane	0.035	0.048	0.047		0.043	17.3
n-propylbenzene	1.437	1.280	1.220		1.312	8.5
2-chlorotoluene	0.721	0.636	0.574		0.644	11.5
4-chlorotoluene	0.757	0.683	0.631		0.690	9.2
1,3,5-trimethylbenzene	0.822	0.746	0.705		0.758	7.8
tert-butylbenzene	0.742	0.686	0.650		0.693	6.7
1,2,4-trimethylbenzene	0.777	0.695	0.620		0.697	11.3
sec-butylbenzene	1.271	1.120	1.084		1.158	8.6
1,3-dichlorobenzene	0.429	0.384	0.345		0.386	10.9
4-isopropyltoluene	0.958	0.843	0.794		0.865	9.7
1,4-dichlorobenzene	0.417	0.369	0.328		0.371	11.9
1,2-dichlorobenzene	0.327	0.290	0.249		0.289	13.6
n-butylbenzene	1.000	0.859	0.792		0.883	12.0
1,2,4-trichlorobenzene	0.207	0.179	0.145		0.177	17.7
Hexachlorobutadiene	0.124	0.117	0.111		0.117	5.4
Naphthalene	0.269	0.233	0.142		0.215	30.4
1,2,3-trichlorobenzene	0.152	0.134	0.108		0.131	17.0
4-bromofluorobenzene	0.255	0.262	0.260		0.259	1.4
1,2-dichlorobenzene-d4	0.192	0.192	0.173		0.185	6.0

^{*} Compounds with required minimum RRF and maximum %RSD values.

All other compounds must meet a minimum RRF of 0.010.

8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name:	PTL		Contract:		=
Lab Code:		Case No.:	SAS No.:	SDG N	o.:
Lab File ID (Standard):	V0084.D	_	Date Analyzed:	03/18/00
Instrument II	D: HP-5971	Α		Time Analyzed:	19:36
GC Column:	DB-624	ID: 0.53	(mm)	Heated Purge: (Y/N)N

		IS1 AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	641406	12.69				
Ī	UPPER LIMIT	1282812	12.19				
Ī	LOWER LIMIT	320703	13.19				
ſ	EPA SAMPLE						
	NO.						
01	BLANK1	818465	12.68			-	
02	BLANK2	837747	12.68				
03	ER-33	657396	12.69				
04	ER-00	703063	12.69				
05	EL-21	673178	12.69				
06	EL-00	715830	12.70				
07	EC-70	711244	12.69				
80	EC-33	753555	12.69				
09	EC-00	597116	12.68	95			
10	EC-00A	740318	12.68				
11	RB	771693	12.68		1801775-18070		
12	ТВ	771875	12.68				

IS1 = Fluorobenzene

AREA UPPER LIMIT = +100% of internal standard area
AREA LOWER LIMIT = -50% of internal standard area
RT UPPER LIMIT = +0.50 minutes of internal standard RT
RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column to be used to flag values outside QC limit with an asterisk.

* Values outside of contract required QC limits

3/90

CHAIN OF CUSTODY

Hydrology Applied

Phone

724) 728 - 6498 724) 728 - 6586

<u>b.petroff@worldnet.att.net</u>

Address:

Customer:

Lyondell Chemical

100 Frankfort Rd Monaca Pa, 15061

E-Mail: Fax:

400 Frankfort Rd, Monaca, Pa 15061

(stanrard / rush)
Fax results: N

Trun around time Standard

Project ID: LAB ID:

Associates, Inc.

Date:

3/14/00

Page 1 of 1

Preserved Y (W)
Sample Intact: (Y) N Date Spld. 3/14/00 3/14/00 3/14/00 3/14/00 3/14/00 3/14/00 3/14/00 3/14/00 3/14/00 3/14/00 Time Spld 10:00 9:31 8:00 9:34 9:33 9:32 9:26 9:24 9:36 # of containers Water × × MATRIX Soil Other EPA Test Method 524.2 × × BTEX (602/8020) TPH (418.1) VOA (624/8260) + 15 ORGANICS BNA / BN / + 15 Pest / Herb PCB's TCLP Organics / pp + 40 Other TCLP / RCRA (8) Priority Pol. (13) METALS Total Metals (list below) Dissolved Metals Other pH/CN/Sulfide Fl pt / % Solids OTHERS O & G / TSS / TOX BOD / COD / TOC E-Mail results: Q N

Instructions: Please Fax results to and Skip Meier: (303) 873 - 6110 and E-Mail results to Brian Petroff: b.petroff@worldnet.att.net

Submitted by: BDP

RC-EC-33-0300

RC-EC-70-0300 RC-EL-00 -0300 RC-EL-16-0300 RC-ER-00-0300

Trip Blank Rinsate Blank RC-EC-00-0300A RC-EC-00-0300 RC-ER-33-0300 Sample ID

Agent of: AHA
Received by: B
Agent of: PTL
Date / Time: 3-15-00 1000 Agent of: Agent of: Date / Time: Received by: Submitted by:_ Agent of: Received by: Agent of: Submitted by:___ Date / Time: Report to: Dellverables: Standard Customized Reduced

Notes: